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Analysis of gastric microbiome reveals three 
distinctive microbial communities associated 
with the occurrence of gastric cancer
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Abstract 

Background:  Gastric microbial dysbiosis were reported to be associated with gastric cancer (GC). This study aimed to 
explore the variation, diversity, and composition patterns of gastric bacteria in stages of gastric carcinogenesis based 
on the published datasets.

Methods:  We conducted a gastric microbial analysis using 10 public datasets based on 16S rRNA sequencing, includ-
ing 1270 gastric biopsies of 109 health control, 183 superficial gastritis (SG), 135 atrophic gastritis (AG), 124 intestinal 
metaplasia (IM), 94 intraepithelial neoplasia (IN), 344 GC, and 281 adjacent normal tissues. And QIIME2-pipeline, 
DESeq2, NetMoss2, vegan, igraph, and RandomForest were used for the data processing and analysis.

Results:  We identified three gastric microbial communities among all the gastric tissues. The first community (des-
ignate as GT-H) was featured by the high abundance of Helicobacter. The other two microbial communities, namely 
GT-F, and GT-P, were featured by the enrichment of phylum Firmicutes and Proteobacteria, respectively. The distribu-
tion of GC-associated bacteria, such as Fusobacterium, Peptostreptococcus, Streptococcus, and Veillonella were enriched 
in tumor tissues, and mainly distributed in GT-F type microbial communities. Compared with SG, AG, and IM, the 
bacterial diversity in GC was significantly reduced. And the strength of microbial interaction networks was initially 
increased in IM but gradually decreased from IN to GC. In addition, Randomforest models constructed in in GT-H and 
GT-F microbial communities showed excellent performance in distinguishing GC from SG and precancerous stages, 
with varied donated bacteria.

Conclusions:  This study identified three types of gastric microbiome with different patterns of composition which 
helps to clarify the potential key bacteria in the development of gastric carcinogenesis.
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Introduction
Gastric cancer (GC) is the fifth most common cancer 
globally, which is a health threat worldwide [1]. Gener-
ally, advanced age, male sex, family history, high salt diet, 
atrophic gastritis, and Helicobacter pylori infection were 

reported as risk factors of GC [2]. In recent years, many 
studies based on next-generation sequencing technolo-
gies have revealed a close relationship between gastric 
bacteria and GC, suggesting that non-H. pylori bacteria 
may be associated with the progression of GC [3].

GC tissues were reported to have a unique micro-
ecology, in which microbial diversity and Helicobac-
ter abundance were reduced, and other genera such as 
Actinobacteria, Lactobacillus, Clostridium, etc. were 
enriched [4]. Whereas another study reported that 
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Lactococcus, Veillonella, Fusobacterium, and Leptotri-
chia were enriched in patients with GC, compared 
to patients with functional dyspepsia [5]. Coker et  al. 
identified that Dialister pneumosintes, Parvimonas 
micra, Slackia exigua, Peptostreptococcus stomatis, 
and Streptococcus anginosus were centralities in the 
ecological network of GC and also inhabit the oral cav-
ity [6].

Several studies identified that some gastric bacteria 
were also associated with gastric precancerous lesions 
[7–9]. Rhizobiales was found to be more enriched in 
patients with intestinal metaplasia (IM) than in those 
with superficial gastritis (SG) [10]. Sung et  al. have 
identified that Granulicatella, Actinomyces, Rothia, 
Peptostreptococcus, Streptococcus, Abiotrophia, and 
Parvimonas are associated with atrophic gastritis 
(AG) or IM in patients following H. pylori successful 
eradication [11]. A recent study reported that Sphin-
gomonas and Aquincola tertiaricabonis were increased 
in IM, Neisseriaceae, Streptococcus, and Haemophilus 
parainfluencae were significantly enriched in patients 
with intraepithelial neoplasia (IN), and Veillonella and 
Lactobacillus were more abundant in GC [7].

However, these gastric microbiota associate studies 
did not reach consistent conclusions about the bac-
teria related to GC, which may be influenced by the 
effect of age and geographic location of participants, 
extraction and sequencing methods of samples, and 
differential analysis and statistical methods. In addi-
tion, the high abundance of H. pylori in the stomach 
of some patients with positive H. pylori infection could 
significantly affect the microbial diversity and compo-
sition structure of gastric microbiome [9, 12–14]. We 
suggested that specific microbial composition patterns 
influenced by some abundant taxon could affect the 
identification of disease-related microbes. As previ-
ous studies have demonstrated that the gut microbi-
ome can be classified into distinct enterotypes, which 
help us understand the bacteria associated with human 
health and disease [15]. Whereas the compositional 
patterns of gastric microbiota and its association with 
the occurrence of GC were not identified yet.

In this work, we investigated several 16S sequenc-
ing datasets from gastric microbiota-related studies on 
the key bacteria at different stages of GC progression, 
using multiple methods with batch effect removed. 
And we explored the composition patterns of gastric 
microbiome and further analysed the changes in GC-
related bacteria, microbial diversity and ecology based 
on three identified gastric microbial communities, as 
well as the value of GC prediction.

Materials and methods
Datasets collection
We conducted a gastric microbial study using datasets 
from 10 publications that included 16S sequencing 
data for one or more biopsies of gastritis, precancerous 
lesions, GC, and carcinoma adjacent tissues. The data-
sets were labelled as d1 [16], d2 [5], d3 [7], d4 [17], d5 
[18], d6 [6], d7 [19], d8 [20], d9 [21], and d10 [9]. These 
studies had similar exclusion criteria, such as subjects 
not taking proton pump inhibitors, prebiotics, and 
antibiotics at least a month before sample collection. 
And the raw sequence data were retrieved from the 
Sequence Read Archive of the NCBI database.

Data processing
Sequencing quality filtering and analysis of differ-
ent dataset were performed using the QIIME2 pipe-
line separately (v2020.11)[22]. Raw reads were filtered 
and dereplicated using VSEARCH and Deblur plugin 
(Paired-end reads were merged before quality con-
trol), which generated the feature table and feature 
representative sequences. The samples with a total 
abundance (total number of sequences obtained from 
the sample) > 3000, features with a total abundance > 10 
and observed in at least two samples were reserved for 
subsequent analysis. The SILVA 16S database (v138) 
was used for taxonomy assignment of sequence data-
sets and performed by the QIIME2 plugin feature clas-
sifier [23]. Each dataset was processed independently to 
gain the count tables, with features ranging from phy-
lum to genus. The abundant tables were merged at each 
taxonomy level and converted into relative abundance 
tables for microbial community analysis, bacterial com-
position analysis, and random forest model construc-
tion. The feature abundance tables were rarefied to the 
sequencing depth of 3000 to filter the very low abun-
dance sequences or dataset-specific taxa for taxonomic 
discovery analysis, ecology analysis, and diversity anal-
ysis of gastric microbiota.

Taxonomy discovery analysis
Taxonomic discovery analysis was performed using 
the R package DESeq2 based on genera (relative abun-
dance > 0.1%), with cohort information and relative 
abundance of Helicobacter added to adjust age, gender, 
H. pylori, and batch effects [24]. We further utilized 
R package NetMoss2 [25], which based on Sparcc [6] 
network modules and showed good performance in 
removing batch effects, to identify robust GC-associ-
ated bacteria from multiple datasets.
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Microbial composition pattern and cluster analysis
The microbial composition pattern and cluster analysis 
to identify gastric microbial community was performed 
based on genera (relative abundance > 0.1%) using 
Jensen-Shannon divergence (JSD) distance and the Par-
titioning Around Medoids (PAM) clustering algorithm 
and visualized using between-class analysis (BCA) 
and principal coordinates analysis (PCoA), as previous 
study reported [26].

Alpha diversity and beta diversity analysis
Alpha diversity analysis with Shannon, Chao1, and Simp-
son indexes was performed based on rarefied abundance 
table at genus level using Picante package. Beta diversity 
with Bray–Curtis distance matrices was performed based 
on rarefied abundance table at genus level using Vegan 
package.

Microbial interaction network analysis
The identification of co-occurring and co-exclusion bac-
teria based on rarefied abundance table at the genus level 
with relative abundance > 0.1% was estimated using the 
SparCC algorithm [6], and visualized by Gephi (v0.9.2) 
[27].

Machine‑learning approach for model building
All the random forest models were conducted based on 
genera with relative abundance > 0.1% using R package 
RandomForest. The combined dataset for GC and other 
diagnosis group was randomly split into training and test 
sets in a ratio of 7:3. Further, we used R package Boruta 
to select important bacteria that contributed significantly 
to the classification and constructed the models based on 
these selected genera. The receiver operating characteris-
tic (ROC) analysis was performed to illustrate the perfor-
mances of classification models using R package ROCR.

Statistical analysis
The differences in Alpha diversity were assessed using 
an ANOVA test for multiple groups. Multiple group 
comparisons of dissimilarities were performed using the 
permutational multivariate analysis of variance test (PER-
MANOVA). Network parameters including topological 
coefficient, closeness, and betweenness were estimated 
using igraph (v1.2.5) and compared using the Wilcoxon 
test. Data visualizations were performed by the R Project 
(v4.1.0). All p values < 0.05 after multiple comparisons 
correction using false discovery rate method were con-
sidered significantly different.

Results
Data demographics and assessment
We collected most of the current published gastric 
microbial sequencing studies related to the progression 
of GC. These studies are mainly in Asia, especially in 
China (Supplementary Fig.  1A). The datasets presented 
pertain to a total of 1270 gastric mucosal samples after 
exclusion. And these samples were classified into health 
control (HC, 109), superficial gastritis (SG, 183), atrophic 
gastritis (AG, 135), intestinal metaplasia (IM, 124), 
intraepithelial neoplasia (IN, 94), gastric cancer (GC, 
344), and carcinoma adjacent normal tissues (CAN, 281) 
groups, according to histological diagnosis (Supplemen-
tary Fig.  1B). The baseline characteristics of metadata 
were presented in Supplementary Table  1 and Supple-
mentary Table 2. The significance age and gender differ-
ences among the groups were adjusted using DESeq2 in 
subsequent differential analysis.

Key bacteria in GC
We revealed that enriched Acinetobacter, Fusobacterium, 
Lactococcus, Lactobacillus, Peptostreptococcus, Prevo-
tella, Streptococcus, Selenomonas, and Veillonella in 
GC were found in more than one study (Supplementary 
Fig. 2 and Supplementary Table 3) [5–7, 19, 20]. We then 
assessed the genera enriched in each diagnosis group in 
combined datasets using DESeq2 (Fig.  1A). Comparing 
with SG group, Acinetobacter and Ruminococcus were 
enriched in IN group, Actinobacillus, Actinomyces, Bifi-
dobacterium, Fusobacterium, Lactobacillus, Parvimonas, 
Rothia, Streptococcus, Veillonella, etc. were enriched 
in GC group. In addition, significantly enriched Peptos-
treptococcus and Atopobium, and depleted Snodgrassella 
were observed in GC group compared with both CAN 
and SG groups. Gilliamella, Sphingomonas, Bradyrhizo-
bium, and Phreatobacter were depleted in both IN and 
GC groups compared with SG group. We further utilized 
R package NetMoss2 based on microbial Sparcc network 
of GC and SG to identify GC-related bacteria. The results 
also showed that Fusobacterium, Peptostreptococcus, 
Streptococcus, and Veillonella were enriched in GC tis-
sues (Fig. 1B). Prevotella was the key taxon in GC and SG 
networks, and positive correlated with Fusobacterium, 
Streptococcus, and Peptostreptococcus in microbial net-
work of SG biopsies (Fig. 1C).

Three microbial communities are defined in gastric 
microbiome
We performed a multidimensional cluster analysis using 
JSD distance and PAM algorithm to evaluate the bacte-
rial community of the gastric microbiome and revealed 
that the samples formed three distinct clusters (Fig.  2A 
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and Fig.  2B, Supplementary Table  4). The first cluster 
was identifiable by the variation in the levels of phylum 
Campilobacterota (mean relative abundance = 74.18%, 
p < 0.001), as well as high abundant Helicobacter, 
which we designated as GT-H (Gastric type H, Fig.  2C, 

Supplementary Fig.  3, and Supplementary Fig.  4). The 
second cluster was named GT-F since the proportion 
of phylum Firmicutes increased (mean relative abun-
dance = 26.30%, p < 0.001). In the biopsies of third cluster 
(GT-P), the bacteria belonging to phylum Proteobacteria 
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Fig. 1  A DESeq2 identifies specific bacterial taxa associated with the development of GC, with age, gender, H. pylori, and batch effects adjusted. 
B NetMoss2 identifies specific bacterial taxa in microbial Sparcc networks between GC and SG. C Sparcc networks between GC and SG constructed 
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Fig. 2  Differences of microbial composition and diversity between three bacterial communities. A, B The multidimensional cluster analysis of the 
gastric microbiome at the genus level shows three distinct clusters of samples. C The abundance of the gastric microbiota is shown for phylum level 
in three microbial communities. D Alpha diversity was estimated by the Shannon index at the genus level for three microbial communities. E The 
relative abundance of significantly changed bacteria in GT-F type samples among different disease groups. GT: gastric type. *: p.adj < 0.05, **: p.
adj < 0.01, ***: p.adj < 0.001

(See figure on next page.)
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(mean relative abundance = 88.86%, p < 0.001) were dom-
inant. Most GC-enriched genera, such as Fusobacterium, 
Peptostreptococcus, Streptococcus, Veillonella, etc. were 
mainly distributed in samples of GT-F (Supplementary 
Fig. 4). Helicobacter was most enriched in GT-H group, 
and Pseudomonas was more abundant in GT-P group. 
the Shannon index of alpha diversity analysis showed 
that GT-F has the highest microbial diversity, followed 
by GT-H and GT-P (Fig.  2D). In biopsies of GT-H and 
GT-F, we also observed that Fusobacterium, Prevotella, 
Streptococcus, and Veillonella were increased in IN and 
GC groups, whereas Gilliamella and Snodgrassella were 
reduced (Fig. 2E and Supplementary Fig. 5). The enriched 
Acinetobacter in GC group and Pseudomonas in CAN 
group were observed in GT-P type samples (Supplemen-
tary Fig. 6).

In addition, Samples of GT-H and GT-F were not lim-
ited to the disease and projects, each existed in multiple 
diagnosis groups and datasets (Supplementary Fig.  7). 
Whereas most samples of GT-P belong to GC and CAN, 
and belong to dataset d8.

Gastric microbial diversity is altered in three gastric 
microbial communities
We further performed the alpha diversity analysis with 
Shannon, Chao1, and Simpson indexes between diagno-
sis groups (Fig. 3A and Supplementary Fig. 8). In GT-H, 
the diversity of gastric microbiota was significantly 
increased in GC group compared to CAN groups. In 
GT-F, a decreasing trend of diversity, richness, and even-
ness of gastric microbiota was found across AG to GC. 
We also observed that the microbial diversity of GC was 
significantly higher than CAN in samples of GT-P. Dif-
ferences in microbial community structure were fur-
ther evaluated in three gastric microbial types (Fig. 3B). 
The beta diversity using Bray–Curtis distance matrices 
showed that the composition of mucosal microbiota had 
significant differences between diagnosis groups. To ver-
ify these results, we also performed the analysis of alpha 
and beta diversity between disease groups in independ-
ent datasets (Supplementary Figs.  9,  10,  11,  12,  13  and 
14). The significantly decreased alpha diversity of GC 
microbiome in both GT-H and GT-F communities only 
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appeared in dataset d3. Whereas the variety of beta diver-
sity between different diagnosis groups was observed in 
multiple datasets of different microbial communities.

Gastric microbiota ecology is altered in three gastric 
microbial communities
We further performed a microbial co-occurrence and 
co-exclusion network and topology analysis at differ-
ent stages of GC progression to explore the interac-
tion of gastric microbiota. In GT-H group, the strength 
of co-occurring interactions among genera increased 
in AG, IM, IN, and decreased in GC and CAN (Fig. 4A 
and Fig. 4B, Supplementary Table 5 and Supplementary 
Table  6). Co-exclusion interactions were observed from 
SG to IM tissues, with Helicobacter as the interaction 
node. In GT-F type samples, the interaction between gas-
tric bacteria in IM group was the strongest, and the inter-
action strength was gradually weakened from IN to GC 
group. We observed that Prevotella, Streptococcus, Neis-
sera, Shewanella, Halomonas, etc. had a higher degree 
of centrality and strong co-occurrence interaction with 
other genera. Whereas Pseudomonas co-excluded with 
several genera in CAN groups of GT-P type microbial 
community (Fig. 4C).

The value of gastric microbiota in predicting GC
We further constructed random forest models based on 
the genera with relative abundance > 0.1% in different 
gastric microbial communities, to assess the value and 
general applicability of gastric microbiota in predicting 
GC. The improtant genera that contributed to the models 
were selected by Boruta. The models in GT-H and GT-F 
microbial communities performed well in distinguishing 
GC and SG, with area under the curve (AUC) of 0.908 
and 0.854 (Fig. 5A). Meanwhile, the models constructed 
for distinguishing GC and precancerous lesions, includ-
ing AG, IM, and IN, also showed excellent performance 
with AUC of 0.964 and 0.924 (Fig. 5B). Haemophilus and 
Selenomonas were the main contributers in models dis-
tinguishing GC from others groups of GT-H microbial 
community, and Acinetobacter was important in models 
of GT-F type community. In addition, the bacterial model 
showed excellent performance in distinguishing GC and 
CAN with an AUC of 0.939 in samples of GT-P (Fig. 5C). 
The genera that contributed significantly to the gastric 

microbial models were also showed in Supplementary 
Table 7.

The influence factors affect gastric microbiota
Finally, we analysed the influence of factors, such as age, 
gender, geolocation, sequencing region, and batch effects 
on these GC-associated bacteria. The results showed that 
Prevotella, Lactobacillus, and Streptococcus were more 
abundant in patients with advanced age, Halomonas 
and Shewanella were enriched in female subjects (Sup-
plementary Fig.  15 and Supplementary Fig.  16). Halo-
monas and Shewanella were also found more abundant 
in participants of North China, whereas Pseudomonas 
was most enriched in participants of Liaoning, China 
(Supplementary Fig.  17). In addition, Halomonas and 
Shewanella were more abundant in datasets with V3-V4 
region sequenced than those with V4 region sequenced. 
It was more likely to detect that the higher relative abun-
dance of gastric dominant bacteria in the V3-V4 and 
V4 region sequencing datasets (Supplementary Fig.  18 
and Supplementary Fig.  19). Whereas the distribution 
of these genera in other sequencing datasets was signifi-
cantly affected by H. pylori infection.

Discussion
In this study, we investigated several previous gastric 
microbial studies, reanalysed the associated datasets 
to identify the microbial community and key bacteria, 
which contribute to the occurrence and progression of 
GC. We revealed three types of gastric microbial com-
munities, which influenced microbial diversity, inter-
action, and predictive value among different diagnosis 
groups.

We furthermore identified Fusobacterium, Peptos-
treptococcus, Streptococcus, and Veillonella that were 
associated with the development of GC in multiple 
datasets. Some of these GC-related bacteria were also 
reported in several previous publications, but with-
out consistent conclusions. Wang et  al. found that a 
taxon of Veillonella and two taxa of Lactobacillus were 
enriched in GC using Linear discriminant analysis 
Effect Size analysis [7]. And a previous study revealed 
more GC-enriched bacterial taxa, including Peptostrep-
tococcus, Streptococcus anginosus, Slackia, Gemella, 
and Fusobacterium [6].

Fig. 4  Correlation networks of the gastrointestinal genus among disease groups. A The interactions of bacteria in gastric biopsies in samples of 
GT-H. B The interactions of bacteria in samples of GT-F. C The interactions of bacteria in samples of GT-P. The size of nodes corresponds to weighted 
node connectivity scores, and the nodes were colored by phylum. Red edges denote positive correlations and blue edges denote negative 
correlations. The interactions of bacteria in GC and CAN groups were exhibited with strengths > 0.4, and in SG, AG, IM, IN groups with strengths > 0.6. 
HC: health control, SG: superficial gastritis, AG: atrophic gastritis, IM: intestinal metaplasia, IN: intraepithelial neoplasia, GC: gastric cancer, CAN: 
carcinoma adjacent normal tissues

(See figure on next page.)
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Enrichment of these GC-related bacteria has also been 
found in other digestive tumours. Streptococcus, Peptos-
treptococcus, Prevotella, Fusobacterium, Porphyromonas 
gingivalis, and Capnocytophaga gingivalis have been 
identified that correlate strongly with oral cancer [28]. 
Fusobacterium nucleatum could cause opportunistic 
infections and be associated with colorectal cancer [29]. 
Peptostreptococcus anaerobius could promote colorectal 
carcinogenesis and modulate tumor immunity [30]. The 
mechanism of these bacteria in promoting the develop-
ment of colon cancer has been progressively clarified.

We found that most bacteria associated with GC have 
been reported that have pro-inflammatory activities and 
can release virulence factors, suggesting that long-term 
chronic inflammation and toxins accumulation caused by 
pathogenic bacteria may be risk factors in the occurrence 
of GC [31–33]. Such as Group B Streptococcus, a lead-
ing cause of pneumonia, sepsis, and meningitis, was an 
asymptomatic member of the gastrointestinal microbiota 

[34]. Streptococcus was significantly increased and domi-
nant in GC tissues, its role in in digestive tract needs 
further study. In addition, modulation of the NF-κB sign-
aling pathway by infectious bacteria was linked to gastro-
intestinal cancers initiation and development [35]. NF-κB 
was highly activated at the site of infection by H. pylori, F. 
nucleatum, etc., for its antimicrobial activity and mainte-
nance of tissue homeostasis [36].

We also found that Acinetobacter were enriched in IN 
group. While in the other two studies, Acinetobacter was 
reported more abundant in GC compared with CAN [19, 
20]. Acinetobacter lwoffii and Streptococcus anginosus 
were enriched in patients with persistent inflammation 
after H. pylori was eradicated [11]. Gastritis and hyper-
gastrinemia were not specific for H. pylori, but can be 
induced by Acinetobacter lwoffii capable of infecting the 
stomach in a mouse model [37]. These results suggested 
that Acinetobacter was associated with the occurrence 
and development of gastric neoplasia. The genera related 
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Fig. 5  Based on genera selected by Boruta, the performance of gastric microbial models in prediction GC was analysed by receiver operating 
characteristic (ROC) curve analysis. A The discriminatory potential of microbial model in distinguishing GC and SG. B The discriminatory potential 
of microbial model in distinguishing GC and precancerous lesions, including AG, IM, and IN. C The discriminatory potential of microbial model in 
distinguishing GC and CAN. SG: superficial gastritis, IM: intestinal metaplasia, GC: gastric cancer, CAN: carcinoma adjacent normal tissues, preGC: 
precancerous lesions of gastric cancer. AUC: area under the curve
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to the AG and IM were not consistent in our research 
and previous studies. However, a study further explored 
the relationship between gastric microbiota and the 
occurrence of GC in a mouse model, and found that the 
bacteria of patients with IM or GC could selectively colo-
nize the stomach of germ-free mice and induce gastric 
precancerous lesions [38].

Intestinal microbiota could be distinguished into differ-
ent enterotypes, such as ET B, ET F, and ET P driven by 
Bacteroides, Firmicutes, and Prevotella, respectively [39]. 
While, high abundance of H. pylori in stomach could dis-
rupt the diversity and composition of gastric mucosal 
microbiome, which might affect the identification of GC 
related bacteria [40]. Inspired by these findings, we ana-
lysed the composition patterns of gastric microbiome 
and identified three microbial communities, which were 
defined as GT-H, GT-F, and GT-P. The GT-H was driven 
by H. pylori infection, with a relative abundance of Heli-
cobacter exceeding 40% in most samples. GT-F was more 
like a mixed type of gastric microbiota, with Firmicutes, 
Proteobacteria, and Bacteroidota in higher proportions. 
GT-F also had the highest microbial diversity, with most 
GC-related bacteria, such as Fusobacterium, Prevotella, 
Streptococcus, Veillonella, etc. enriched. GT-P type gas-
tric microbial community was similar to GT-H type, 
both showing the dominance of a single genus, which 
might be the result of infection with certain pathogenic 
bacteria. The dominant H. pylori in stomach could cause 
long-term chronic inflammation of gastric mucosa and 
lead to the occurrence of AG [41]. Therefore, the more 
abundant bacteria in GT-P type microbiota might play an 
important role in the development of GC. However, the 
formation of such groups could also be caused by envi-
ronmental contamination of samples.

GT-H and GT-F types were more common in gastric 
biopsies, and not limited to the disease and projects. 
Whereas most samples of GT-P were tumour tissues and 
para-cancer tissues, which were distinguished by an over-
representation of two genera of Proteobacteria, namely 
Acinetobacter and Pseudomonas. In several gastric micro-
bial studies, only Chen et al. reported that Pseudomonas 
aeruginosa was enriched in non-cancerous tissues [20]. 
Due to the low proportion of GT-P type samples in other 
datasets, several high abundance bacteria might mask 
the changes of Pseudomonas in GC progression. The 
diversity and composition of the gastric microbiota were 
significantly altered in different stomach normal, peri-
tumoral, and tumoral microhabitats [19]. We suggested 
further dividing gastric microhabitats according to the 
different microbial communities to study the association 
between gastric microbiota and gastric carcinogenesis.

The diversity analysis revealed that a significantly 
decreased bacterial alpha diversity in GC and CAN be 
compared with AG, IM, and IN in samples of GT-F and 
GT-P, confirming previous studies [6, 7]. The reduced 
bacterial interaction strengths were also observed in 
GC and CAN be compared with other disease groups. 
The genera Prevotella, Streptococcus, Shewanella, and 
Halomonas had a higher degree of centrality and strong 
co-occurrence interaction with other genera across the 
development of GC in samples of GT-H and GT-F. We 
also found that Helicobacter was co-excluded with mul-
tiple genera in GT-H type tissues with precancerous 
lesions. It suggested that protecting the diversity of gas-
tric microbiota and stabilizing the microenvironment 
was a potential therapeutic strategy to reduce the infec-
tion rate of H. pylori or other pathogens.

Shewanella and Halomonas were reported to be 
enriched in the peritumoral microhabitat and non-
atrophic chronic gastritis, and were also associated with 
rectal cancer, which was an opportunistic pathogen 
associated with gastrointestinal infection [7, 19, 42]. We 
further identified that Shewanella and Halomonas were 
more enriched in female patients and northern popu-
lations. Pseudomonas was more abundant in Liaoning 
Province, China, and was mainly concentrated in one 
dataset. The distribution of these three genera may be 
affected by the sequencing region, as well. Prevotella 
and Streptococcus were more abundant in patients with 
advanced age. These results suggest that age, sex, geolo-
cation, and sequencing region are important factors 
affecting the abundance of several gastric bacteria. In 
addition, the GC-associated genera, such as Fusobac-
terium, Peptostreptococcus, Prevotella, Streptococcus, 
and Veillonella were less affected by batch effects and 
enriched in most datasets. These potentially pathogenic 
bacteria enriched in GC may form a harmful microeco-
logical network and participate in the pathological pro-
cess of gastric mucosa.

Several studies had identified that the significantly 
changed non-H. pylori genera could be used as the 
potential microbial biomarkers for GC and precancer-
ous lesions [6–8]. A study in Linqu, China revealed that 
the panel of Helicobacter, Bacillus, Capnocytophaga, 
and Prevotella could help to distinct advanced gastric 
lesions and showed predictive value for lesion progres-
sion [43]. However, we found that different perfor-
mances of the gastric bacterial model to predict GC 
in different microbial communities with varied con-
tributing genera. The model of microbiota showed an 
excellent performance in distinguishing GC and CAN 
in samples of GT-P. Micriobial models construced in 
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GT-H and GT-P communities also showed good per-
fromance in distinguishing GC from SG, as well as 
the stages of precancerous lesions. It suggests that the 
influence of microbial community should be fully con-
sidered in studying the predictive value of microbiome 
to disease.

Nevertheless, our study still has several limitations. We 
enrolled multiple gastric microbial datasets for analysis 
of GC-associated bacteria, but each dataset only covered 
a few stages of GC development. Most of the samples in 
microbial community GT-P belong to a single data set and 
the relationship between this special microbial commu-
nity and the development of GC needs further investiga-
tion. In addition, we discussed the effects of age, gender, 
and geolocation on the gastric microbiota, while the influ-
ence of other factors such as diet, smoking, and alcohol 
consumption still needs to be addressed. We identified 
the key genera and microbial communities which could 
have contributed to the development of GC and were less 
affected by batch effects, but further studies from a wider 
geographical area using the same sequencing and analysis 
strategy were needed to confirm these conclusions.

In conclusion, our study demonstrated the changes 
of gastric microbiota across the development of GC in 
multiple datasets. We identified three gastric microbial 
communities, namely GT-H, GT-F, and GT-P, which 
exhibited different variations in microbial diversity and 
interactions between different disease groups. There were 
distinct distributions of GC-associated bacteria, such as 
Fusobacterium, Peptostreptococcus, Streptococcus, and 
Veillonella in the samples of the three gastric microbial 
types. Microbial models in three types exhibited distinc-
tive values in the prediction of GC from other diagnosis 
groups. Our study revealed that the composition pat-
terns of gastric microbiota affected the distribution of 
GC-related bacteria, which might help to understand the 
prevention and diagnosis of GC and the use of antibiotics 
in its anti-infective treatment. However, Subsequent con-
firmatory experimental studies in a broader population 
are further needed to identify whether these GC-associ-
ated bacteria colonize the gastric mucosa and promote its 
pathological process.
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